Verification of predictions of CME arrival time at L1

Ed Pope, Met Office, UK

Verifying predictions of CME arrival time at L1

- Compared MOSWOC archived forecasts & CME Scoreboard average of methods with the Scoreboard observed time
- Data: April-December 2014
- Method:
 - Compare MOSWOC arrival time prediction with observed arrival time on Scoreboard.
 - Produce a MOSWOC contingency table (hit, miss, false alarm, correct rejections).
 - Do same for Scoreboard average.
 - Calculate scores & confidence intervals (CIs) for both approaches.
- Confidence interval: a way of quantifying variation in statistical calculations. If CIs overlap, then you can say that no difference exists between the overlapping X & Y. If CIs don't overlap then you can say, e.g. with 95% confidence X is more skilled than Y.

ME: 2016-04-10T11:00:00-CME-001												
Actual Shock Arrival Time: 2016-04-14T06-50Z												
Observed Geomagnetic Storm Parameters: Max Kp: 5.0 CME Note: CME associated with large filament eruption situated close to N18E29 starting around 10UTC.												
Predicted Shock Arrival Time	<u>Difference</u> (hrs)	Confidence (%)	Submitted On	<u>Lead Time</u> (hrs)	Predicted Geomagnetic Storm Parameter(s)	<u>Method</u>	Submitted By					
2016-04-14T00:00Z (-7.0h, +7.0h)	-6.83		2016-04-11T00:54Z	77.93		WSA-ENLIL + Cone (GSFC SWRC)	Yaireska Collado (GSFC)	Detail				
2016-04-13T14:00Z	-16.83		2016-04-11T05:07Z	73.72	Max Kp Range: 5.0	WSA-ENLIL + Cone (NOAA/SWPC)	Leila Mays (GSFC)	<u>Detail</u>				
016-04-13T18:00Z (-12.0h, +6.0h)	-12.83	30.0	2016-04-11T05:45Z	73.08	Max Kp Range: 4.0 - 6.0	WSA-ENLIL + Cone (Met Office)	Met Office (Met Office)	Detail				
2016-04-14T12.00Z (-12.0h, +12.0h)	5.17		2016-04-11T12:30Z	66.33	****	Other (SIDC)	Leila Mays (GSFC)	<u>Detail</u>				
2016-04-13T04:51Z	-25.98	100.0	2016-04-12T20:30Z	34.33		SPM2	Xinhua Zhao (NSSC CAS)	<u>Detail</u>				
2016-04-13T12:44Z	-18.10		2016-04-12T20:33Z	34.28		SPM	Xinhua Zhao (NSSC CAS)	Detail				
2016-04-13T18:15Z	-12.58	65.0	[Max Kp Range: 4.0 - 5.5	Average of all Methods	Auto Generated (CCMC)	Detail				

Results:
scores used to compare
MOSWOC &
CCMC Scoreboard average,
for CME arrival time

				Score-			
Score	моѕwос			board average			
	(M)	5% CL	95% CL	(S)	5% CL	95% CL	A measure of
Hits	33			27			Number of times a yes forecast was a yes occurrence.
Misses	9			0			Number of times a no forecast was a yes occurence.
False alarms	6			12			Number of times a yes forecast was a no occurence.
Correct rejections	7			9			Number of times a no forecast was a no occurrence. Discrimination
							What fraction of observed yes events were correctly forecasted?
Hit rate							= hits/(hits + misses)
(probability of							1=perfect. Sensitive to hits. Ignores false alarms. Good for rare
detection- POD)	0.79	0.68	0.88	1	1		events. Use with FAR. S=perfect. Ranges don't overlap.
detection 100)	0.75	0.00	0.00				Discrimination
							What fraction of the observed no events were incorrectly forecasted
False alarm rate							as yes?
(Probability of False							Conditioned on observations not forecasts. 0=perfect. Sensitive to false alarms. Ignores misses.
Detection- POFD)	0.46	0.23	0.7	0.57	0.4		M better than S, however ranges overlap.
,							Reliability
							What fraction of the predicted yes events didn't occur? = false alarm/(hits + false alarms)
							0=perfect. Sensitive to false alarms. Ignores misses. Use with POD.
False alarm ratio (FAR)	0.15	0.07	0.25	0.31	0.19		M is better than S. Ranges just overlap.
							Accuracy
							Correct predictions of both events & non-events.
Proportion correct							= (hits + correct negatives)/total forecasts Possible to obtain a higher PC by not forecasting rare events at all.
	0.73	0.64	0.82	0.75	0.65		Comparable for both.
							Event frequency/sample climatology. The uncertainty in the
Dana		0.67	0.05	0.50	0.46		occurrence of the observations.
Base rate Forecast rate	0.76	0.67	0.86	0.56	0.46		= observed yes's/total
rorecast rate	0.71	0.6	0.8	0.8	0.73	0.9	Accuracy
							How well did the forecasted yes events correspond to the observed
							yes events?
							0=no skill, 1=perfect. Sensitive to hits, penalises misses & false alarms. 0.69 means that more than half of the events were correctly
							forecasted.
Threat score	0.69	0.58	0.79	0.69	0.57		Comparable for both. Ranges overlap.
							Bias
							How did the forecast frequency of yes events compare to the observed frequency of yes events?
							1=perfect. Measures the ratio of the frequency of forecast events to
							frequency of observed events. Doesn't measure how well forecast
							corresponds to observations (only measures relative frequencies).
Bias score	0.93	0.79	1.09	1.44	1.24		M<1 so under-forecasting. S>1 so over-forecasting. Ranges don't overlap.
Dias score	0.55	0.73	1.03	2.44	1.24		Skill
							How well did the forecast yes events correspond to the observed yes
							events (accounting for hits due to chance in the threat score)?
Equitable threat score	0.18	0.04	0.34	0.3	0.16		0=no skill, 1=perfect. Sensitive to hits. Two approaches are comparable & ranges overlap.
	0.20	0.01	0.5 1	0.0	0.10	0.17	Skill
							What was the accuracy of the forecast relative to that of random
							chance?
							Range -1 to 1. 0= no skill. 1=perfect. Suggests some skill in both forecasting approaches. M slightly lower
Heidke score	0.3	0.07	0.51	0.46	0.27		than S, however ranges ovelap.
							Skill
							How well did the forecast separate the yes events from the no
							events? Similar to Heidke. Range -1 to 1. 0=no skill. 1=perfect.
							Peirce may be more useful for more frequent events.
Peirce score	0.32	0.08	0.57	0.43	0.25	0.6	The two approaches are comparable & ranges overlap.

Contingency Table Observed Total no yes Forecast yes hits false alarms forecast yes correct misses forecast no no negatives observed yes observed no total Total

Summary

- Only a short period of data analysed rerun with more data, preferably several years
 - may help to reduce confidence intervals
 - as indication of whether skill has changed over time (improved through experience/ got worse through losing STEREO?)
- Difficult to strongly distinguish differences between MOSWOC & Scoreboard average.
- Suggestion that NASA are over-predicting (high hit-rate & high false alarm rate) & MOSWOC are under-predicting.
- Ambiguity of 'hit', e.g. when CMEs in quick succession.
- Would be interesting to do cost-benefit analysis, since false alarms are potentially expensive for users.
- Verification definitions: http://www.cawcr.gov.au/projects/verification/