PROJECT TIMELINE | | | | | | | | JARY | | | | | | | APRIL | | | | | MAY | | | R1 = Responsi
JUNE | | | | JULY AU | | | | | ST | | | SEPTEMBER | | | | OCTOBER | | | | | | IBER | | Ţ. | | CEME | | |--|--|---------------------------------|-----------------------|--------------------|---|------------------------|---|--------------------|---------------------|-------------------|-----------------------|---------------|-------|---------------------|----------|----------|--------|------------|---------------------|-----------|-----------|-----------------------|-------------|-----------------------------------|----------------------------------|---|------------------------------------|---|-----------------------------|-----------|-----------------|------------|-------------------|----------------------|----------|-----------|--------------------|---|-----------------------------|------------------------|-----------------|-------------------|-----------|---------------------|-------------------|---------------------|--------------------------------|--------------------|---| | onday of every week | 2 | 9 16 | 23 | 30 | 6 1 | 13 20 | 27 | 0 | 6 | 13 2 | 0 27 | 0 | 3 | 10 | 17 | 24 | 0 | 1 8 | 15 | 22 | 29 | 12 | | | | | | | | 4 21 | 28 | 0 | 4 11 | 1 18 | 25 | 0 | 2 | 9 1 | 16 2 | 3 30 |) 6 | 13 | 20 | 27 | 0 | 4 | 11 | 18 | 4 | | 17 | | | | | _ | | | | | | | | | | | | | | | | | | (
(| SWPC R1
CME star
events. Pr | t time) (b
reliminary
SWP0 | (a) list of h
) model Cl
r list availa
CR2: Prov | ME parar
able in m
ide detai | neter inpi
id-July. (E
led inputs | its for all
loug)
and | _ | ts for a se
tional WS
icluding a
nagnetogr | + | | | | | | | | - | | | | | | | | | | | | | parameter
R2: Prov
ble opera | | | | ilio | | | | | | | | | | | | | - | | - | | | - | + | event | ble opera
list (inclu
file, magr
nation, ar | ding all r | nodel sett | ings, WS | A | ссмо | : replicate
Peter | 1 | CCMC (SV | WPC R2) | Create o | nline dat | abase o
metada | f provid | led SWP | c | | | | | | | | | | | | | 1 | | | | | | | + | CCMC
replica | (SWPC R | 2): Provi | ide tesi
ired gri | runs wi | tion, tin | ne resol | d resoluti
lution, an | ons, te | st
el | | | | | | | | | 1 | | vents; choose | | | | | + | ambie | nt settine | s to be | used fo | r CCMC I | R1 & R2 | . Leila. | Peter | | | | | | | | | | - | + | | tings; choose
i; establish
arks; GONG- | inform | ation to | oe used | for CCI | IC R1 & | R2. SW | /PC will | desired g
nput freq
and othe
evaluate
uent item | wheth | model
nt
er low- | | | | | | | | | s usinto est
to est
driver
be co | | ilil runs and
idation | ution for | | runs. Vic | c | | | | | | | | 1 | SWPC
used fo | R1: Provi
or model
s may be | de met
validat | rics to b | oe
is. | | | | | | | | tions usin
am to est
to 2018)
nill driver
will be co
illity 1. (co | neede
used f | d. These
or the val
ms below | metric:
idation | will be | | | | | | | | | | | | | | | | \top | uncito | | | | ws | SA-Enlil | driven b | by a sir | ngle GC | ONG ma | qnetoq | ram to | to e | | | | | | | + | CCI | del per
MC R2: | Perform | ce ben
n valida | chmark
ation o | f GONG | tinues ii
-WSA-E | nto 20
Inlil di | riv | to (| GONG-\
0 2018) | WSA-En | nlil run: | s from I | NASA re | esponsil | bility: | 1. | | | | JANU | | | _ | | | | _ | | RCH | | | | APRIL | | | | MAY | | | | JUNE | | | | LY | | | AUGL | | | | | MBER | | | ОСТ | | | | | IOVEM | | | | | CEME | | | 018 | CCMC R1
WSA-Enl | : Create | an on-lir | e datab | se of sir | mulation | s using G | ONG- | 5 | 12 1 | 9 26 | 0 | 2 | 9 | 16 | 23 | 30 | 1 / | 14 | 21 | 28 | 111 | 18 | 25 0 | 2 | 9 | 16 23 | 30 | 6 1 | 3 20 | 21 | 0 | 3 10 | 1/ | 24 | U | 1 | 8 1 | 15 2 | 2 29 | , 5 | 12 | 19 | 26 | 0 | 3 | 10 | 1/ | Ť | | -WSA-Enlil | model pe | rforman
: Perforr | ce bench
n validat | marks.
ion of G | (continu
DNG-WS | ied from
SA-Enlil | 2017)
driven by | time- | | | | - | | | | | | | | | | | | | - | | | | | | | | | | | | | | - | | | | - | | | | | - | + | | | depender
to GONG
from 201 | nt GONG
-WSA-E | magne
ilil runs | ograms
rom NA | The res
SA respo | ults will
onsibilit | be compa
1. (conti | red
nued | d validation;
im report | | CMC Ra) | Choose
3. Discu | one
ss and | T | SWPC (Control of the second | CCMC R | GONG- | | | | n a a clin | ninary ti | me-dep | endent | ADAPT- | WSA- | - | + | | | SWPC (C
event for
provide s
ADAPT n
CCMC R ₃ | CCMC R
ource fo
naps to b | · GONG-
e used ii | | CMC R ₃ | : Perfor | ili a preiili | | | | it. Nece | ssary | event for
provide s
ADAPT n | CCMC R
ource fo
naps to b | · GONG-
e used ii | | CMC R3
Inlil simu
ADAPT-V
experts if | WSA mo | or all 12 re
del outpu
.o has not | ts will b | e obtain | ed fron | n subjec
l at CCM | t matte | event for
provide s
ADAPT n | CCMC R
ource fo
naps to b | · GONG-
e used ii | | ADAPT-V | WSA mo | del outpu | ts will b | e obtain | ed fron | n subjec | t matte | | R1: prep
May 1st | oare int | erim rej | port | event for
provide s
ADAPT n | CCMC R
ource fo
naps to b | · GONG-
e used ii | | ADAPT-V | WSA mo | del outpu | ts will b | e obtain | ed fron | n subjec | t matte | | | oare int | erim re | cc | MC R4: | Perform
I be com | validatio | on of AD/ | APT-WSA
-WSA-En | -Enlil (W | SA Versio | on 4.0 or h | igher, Enl | il versior | 1 2.8f or h | gher) driv | ven by 1: | realizati | ons of si | igle AD | APT ma | ps. The | | | | | | | | | | | | | | + | | | event for
provide s
ADAPT n | CCMC R
ource fo
naps to b | · GONG-
e used ii | | ADAPT-V | WSA mo | del outpu | ts will b | e obtain | ed fron | n subjec | t matte | | | oare int | erim re | cc | MC R4: | Perform
l be com | validatio | on of AD/ | APT-WSA
-WSA-En | -Enlil (WS | SA Versic | on 4.0 or h | igher, Enl | il version | 1 2.8f or h | gher) driv | ven by 12 | realizati | ons of si | ngle AD | APT ma | ps. The | | CCMC
sequer | R5: Perfo | rm vali | dation o | of ADA | APT-WS. | A-Enlil o | driven
ts will l | by time | e-depen
pared to | dent Al | DAPT
DNG-V | m | | | event for
provide s
ADAPT n | CCMC R
ource fo
naps to b | ARY | | ADAPT-V | WSA mo | del outpu | ts will b | e obtain | ed fron
mented | n subject | t matte | | May 1st | | | cc | sults will | l be com | pared wi | on of ADA | -WSA-En | lil runs fr | om R1 ar | on 4.0 or h | | | 1 2.8f or h | gher) dri | | | ons of si | | | | | runs fr | om respo
tions. (co | nsibilit
Intinue | ies R1, F | R2, and | d R4. CC | MC will | l invest | tigate v | ways to 1 | dent Al
o the GO
take be | st adv | var | | vaulaation;
im report | event for provide s ADAPT n CCMC R3 | JANUA | VRY | | ADAPT-V
experts if | FEBRU | JARY | ts will b | e obtain
n imple | ed fron
mented | n subject
l at CCM | t matte
C. | due N | May 1st | APRIL | | CC re: | sults will | MAY | pared wi | th GONG | -WSA-En | lil runs fr | om R1 ar | ed R2. | ال | ILY | | | AUGL | IST | | 9 | БЕРТЕ | MBER | | runs fr
realiza | om respo
tions. (co
OCT | nsibilit
intinue
OBER | ies R1, F
s into 20 | R2, and
019) | d R4. CC | MC will | l invest
IBER | tigate v | ways to t | take be
DE | est adv | var
1BE | | | event for
provide s
ADAPT I
CCMC R ₃ | JANU JA 21 2 Perform | ARY 28 1 validat | O
ion of Al | ADAPT-W
experts if | FEBRU
11 18 | JARY 3 25 (WSA Ve | ts will by yet bee | e obtain
n imple | ed fron
mented | n subject
l at CCM | t matte
C. | due N | May 1st | APRIL | | CC re: | sults will | MAY | pared wi | th GONG | -WSA-En | lil runs fr | om R1 ar | ed R2. | ال | ILY | | | AUGL | IST | | 9 | БЕРТЕ | MBER | | runs fr
realiza | om respo
tions. (co
OCT | nsibilit
intinue
OBER | ies R1, F
s into 20 | R2, and
019) | d R4. CC | MC will | l invest
IBER | tigate v | ways to t | take be
DE | est adv | van
1BE |