# Agenda of Equatorial-PRIMO (Problems Related to Ionospheric Models and Observations)

| 13:30 – 13:45 | Introduction of Equatorial-PRIMO                    |
|---------------|-----------------------------------------------------|
| 13:45 – 14:15 | Model Strengths and Weaknesses, Recent Developments |
| 14:15 – 14:45 | Discuss Results for the Coupled Models              |
| 14:45 – 15:30 | General Discussion and Future Plans                 |

**Motivation**: We do not fully understand all the relevant physics of the equatorial ionosphere, so that current models do not completely agree with each other and are not able to accurately reproduce observations.

**Objective:** To understand the strengths and the limitations of theoretical, time-dependent, low-latitude ionospheric models in representing observed ionospheric structure and variability under <u>low to moderate solar activity</u> and <u>geomagnetic quiet</u> conditions, in order to better understand the underlying ionospheric physics and improve models.



**Transport Processes in the Equatorial Ionosphere** 

**Non-coupled Models**: A set of theoretical ionospheric models that require <u>neutral</u> <u>atmospheric densities and temperatures</u>, <u>neutral winds</u>, <u>E×B drift velocities</u> as inputs and calculate lon and electron densities as a function of altitude, latitude and local time. The calculations are not self-consistent.

| Models | Full Names                               | Participated Modelers                                                                  |
|--------|------------------------------------------|----------------------------------------------------------------------------------------|
| IPM    | Ionosphere-Plasmasphere Model            | Ludger Scherliess, Jan Sojka<br>(Utah State University)                                |
| IFM    | Ionospheric Forecast Model               | Ludger Scherliess (Utah State University) Vince Eccles (Space Environment Corporation) |
| LLIONS | Low Latitude IONosphere Sector model     | Vince Eccles (Space Environment Corporation)                                           |
| PBMOD  | Physics Based MODel                      | John Retterer (Boston College)                                                         |
| GIP    | Global lonosphere and Plasmasphere model | Tzu-Wei Fang, George Millward<br>(CU/CIRES & NOAA SWPC)                                |
| SAMI2  | Sami2 is Another Model of the Ionosphere | Joe Huba (NRL)                                                                         |

**Coupled Models**: The other set of ionosphere-thermosphere models are time dependent, three dimensional, non-linear models which solve the fully coupled, thermodynamic, and continuity equations of the neutral gas, self-consistently, with the ion energy, ion momentum, and ion continuity equations.

| Models  | Full Names                                                                         | Participated Modelers                                                       |
|---------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| SAMI3   | SAMI3 is Also a Model of the Ionosphere                                            | Joe Huba<br>Jonathan Krall<br>(NRL)                                         |
| TIEGCM  | Thermosphere lonosphere<br>Electrodynamics General Circulation<br>Model            | Astrid Maute Art Richmond (NCAR)                                            |
| TIMEGCM | Thermosphere Ionosphere Mesosphere<br>Electrodynamics General Circulation<br>Model | Geoff Crowley<br>(ASTRA)                                                    |
| GITM    | Global lonosphere-Thermosphere Model                                               | Aaron Ridley Angeline Burrell (University of Michigan)                      |
| CTIPe   | Coupled Thermosphere Ionosphere<br>Plasmasphere Electrodynamics Model              | Mariangel Fedrizzi Tim Fuller-Rowell Mihail Codrescu (CU/CIRES & NOAA SWPC) |

# **TASK I (All participated models):**

### **Simulating Conditions**

• To carry out very preliminary comparisons, these two sets of models theoretically calculated ionospheric parameters at the <u>Peruvian longitude</u> (~ 284°E) in <u>March</u> equinox for an F10.7 cm flux value of 120 and geomagnetic quiet (e.g. Ap<5). The Burnside factor is set to 1.

**Non-self consistent models:** Scherliess-Fejer E×B drift model, NRLMSISE-00, and HWM93 are used as drivers.

**Self-consistent models:** solar energy input (EUVAC) and magnetic Apex coordinates are used, if applicable.

• International Reference Ionosphere (IRI) model is run in March 20, 2004.

#### **Observations**

• Observations of NmF2 and hmF2 are averaged values during March 16 to 26, 2004 at Jicamarca Peru (magnetic equator) and Tucuman Argentina (15°S, geomagnetic). The mean F10.7 during this period is 116.

Published in AGU Monograph on Modeling the IT System!

#### **Non-Self-Consistent Models**



Mean (black dashed line) stands for the averaged values from the theoretical models.

## **Self-Consistent Models**



## **Self-Consistent Models**



# **TASK II (Non-coupled models):**

#### **Simulating Conditions:**

S&F E×B drift model, NRLMSISE-00, and HWM93 as inputs

March equinox,  $F_{10.7}$ =120, geomagnetic quiet, at longitude 120°E

Case 1: No E×B drift, no neutral wind (Production & Loss, diffusion)

Case 2: With E×B drift, no neutral wind (P&L, drift, diffusion)

Case 3: With E×B drift and neutral wind (P&L, wind, drift, diffusion)

### **Continuity Equation**

$$\partial N/\partial t = q - \beta(N) - div(NV\downarrow || + NV\downarrow \perp)$$



**Production Loss** 

**Transport** 

- Perpendicular transport (V<sub>1</sub>)
  - E×B drift
- Parallel transport (V<sub>||</sub>)
  - Neutral wind effect
  - Plasma diffusion
  - Thermo expansion/contraction
  - Zonal transport (neglect here)

**Case 1:** No ExB drift, no neutral wind → Production and Loss



Case 3: With ExB drift and neutral wind → P&L, wind, drift, diffusion

