What does Incoherent Scatter Radar bring to Conductance Specification?

Stephen Kaeppler, SRI International

December 11, 2016

Motivation and Limitations

- Incoherent scatter radar is one of few measurements that can simultaneously observe the necessary parameters to determine conductivity without requiring an electron transport model although validity limited to B_{\parallel} look direction
 - Electron density is the prime parameter that is measured by ISR. However, need to have enough SNR.
 - Can calculate conductivity using a neutral atmosphere and magnetic field model
 - Long history of inverting E-region electron density to quantify precipitating flux (assuming or not spectral shape of distribution). Requires particle transport model to do the inversion.
- Unlike satellite measurements, ISR can continuously sample auroral phenomena (does not suffer from a revisit rate issue) and quantify rapid temporal variations (down to 10 seconds, depending on the mode).
- Unlike satellite measurements, ISR is spatially limited to a very small region of space making it difficult to infer a global distribution of conductance. At best you could get a 'ring' of measurements.

What does ISR bring to the table?

- ISR brings a means by which to update or generate new conductance specification or models over a wide range of geophysical activity.
- Sondrestrom ISR has 30+ years of irregularly sampled data, PFISR has 9+ years of regularly sampled, continuous data.

Figure: Data coverage from PFISR with modes suitable for conductance estimation. Note: does not include 2016.

Updating Empirical Conductance Formulas

Original empirical formulas in Robinson et al., 1987, JGR:

$$\Sigma_P = \frac{40 \langle E \rangle}{16 + \langle E \rangle^2} \, Q_0^{1/2} \qquad \qquad \frac{\Sigma_H}{\Sigma_P} = 0.45 \langle E \rangle^{0.85}$$

FIRST STEP: Relation derived in study by Kaeppler et al., 2015, JGR using two events from PFISR (2012-11-06 and 2012-11-24) and Sondrestrom (2013-11-30). Fit shown in black.

$$\frac{\Sigma_H}{\Sigma_P} = 0.57 \langle E \rangle^{0.53}$$

Very Rapid Temporal Variations from Plasma Lines

Study by Vierinen et al., 2016 GRL using Sondrestrom plasma line - very high temporally resolved electron density structures/derive conductivity.

How do or will models account for rapid temporal variations in auroral structure?

13 October 2016 CME Event

