Modeling the evening ionosphere with data assimilation techniques during pre-storm and storm days of March 2015

Charles Lin¹, Chia-Hung. Chen¹ and Wei-Han Chen¹, Tomoko Matsuo², Tiger Jann-Yenq Liu³ ¹Department of Earth Science, National Cheng-Kung University, Tainan, Taiwan ²NOAA/SWPC and Univ. of Colorado, Boulder, CO, USA ³Institute of Space Science, National Central University, Jhong-Li, Taiwan

Global distribution of ground-based GNSS and FORMOSAT-3/COSMIC

26 September 2011 Geomagnetic Storm

TECU

Ionospheric Data Assimilation Models

State variables: neutral temperature (TN), oxygen density (O), neutral zonal wind (U), meridional wind (V), [O⁺] ion density

DART-TIEGCM: 90 theoretical ensemble model runs: solar flux (F10.7), cross-tail potential hemispheric power (Kp)

if the assimilation cycle is 60 mins., the result is similar to or worse than NO assimilation.

Chen et al., (2016)

Kp index

if the state variable is only [O+], *the variations of forecast/nowcast follows the background model.*

Chen et al., (2016)

Assimilation for 2015 St. Patrick Storm

- Diff. high lat. forcing
- Heelis & Weimer
- 10-mins cycle

2016]

Chen et al., 2016 shows that if assimilation cycle is 60 mins., the result is similar to or worse than NO assimilation.

- Un-obs. state var. Tn, V, U, [O], [O₂] adjusted based on each of their relationships with TEC [Matsuo et al., 2012; Lee et al., 2012; Hsu et al., 2015; Chen et al.,
 - Indicating importance of driving force of the background model

Adjustments of un-observed state variables

Storm-time eastward E-field adjustments

Storm-time eastward E-field adjustments are affected when neutral winds are state variables

3-days before the storm, during quiet time (14 March 2015)

3-days before the storm, during quiet time (14 March 2015)

Summary:

- 1. Thermosphere model is important for forecast capability.
- 2. The 12-h forecast shows that the low- and mid-latitude ionosphere forecast are acceptable (< 70% RMSE) for several hours, where as high latitude forecast is very limited.
- 3. Assimilation of TEC improves evening E-field modeling through changing the neutral winds for both quiet and storm times.

Un for NO wind as the state variables

Un for winds as the state variables

