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Weimer05 vs DMSP of Poynting Flux
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= August 2011 storm, main phase, northern hemisphere (NH).

* Disagreement of magnitude and location.

= Clear enhancement of Poynting Flux inside ion flow reversal
boudaries, which is missed by empirical model simulation.

= Question: where does the EM energy deposit during the main
phase of magnetic storms?



Solar wind and IMF conditions
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* August5, 2011 storm: moderate storm with enhanced solar
wind pressure. Main phase is between the two vertical red lines.



Indication of Polar cap area:
Convection Reversal Boundaries (CRBs)

lon drift Velocity(m/s)

3000 E

= Northern Hermsphere of F16

2000 F lon drift velocity -
1000
—1000F
—2000 E| +V_hor _%
X X smooth
—3000t |
A 7%63‘51"”8 CBB7 8la2 217.8229

217.8277

M :Ending CRB

60

Poynting Flux

| Northern Hemisphere of F16

o
1)
L 40
. I
(]
N L
o
o 20
\;</ L
n
0
217.8135 217.8182 217.8229
time(DOY)

217.8277

Black plus signs: ion drift velocity
measured along a path of DMSP F16
over the northern hemisphere during
main phase of August 5, 2011 storm.
Blue line: smoothed velocity using a
moving window of 20 secs.

» Sunward: auroral zone
» Anti-sunward: polar cap

Clear correlation of drift velocity and PF.
Strong PF is located poleward of CRBs
that correlates with the anti-sunward
flow in this region.

PF is intense where the flow is strong,
and is weak where the flow reversals.



Track-integrated Poynting Flux(TIPF)
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= Clearly enhanced PF in polar cap (F15, 16, 18).
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= Percentage of PF inside polar cap is not

negligible .
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Quiet time Main phase
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= August 2011 storm,
main phase
° = DMSPF15, 16, 18
= Binsize:
2° MLAT x 1 hr MLT
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MLat in the dayside
and nightside.

= Equator-ward
Extended polar cap
to 60 MLAT during
main phase.
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14 moderate storms (-100>Sym-H>-200 nT)
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DMSP PF vs TIEGCM Joule heating
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* Bin average of all the DMSP passes in the main phase of August

5, 2011 storm, NH
TIEGCM Resolution: 5°lat x 5°lon
Different locations, different magnitudes



DMSP PF vs TIEGCM Joule heating
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* Bin average of all the DMSP passes in the main phase of August
5, 2011 storm, SH
 No polar cap feature in SH for the model results.



Summary

We investigated the Poynting Flux measured by DMSP
satellites (F15, F16, F18) during magnetic storms.

We defined the area of polar cap using CRBs.

Polar cap can extend equator-ward to 60 degree MLat during
main phase.

Clear enhancement of Poynting Flux was found in the polar

cap, which is comparable to that in the auroral zone during
main phase.

Track-integrated flux often peaks at polar latitudes.
Energy enters IT system at all local times in polar cap.
Improvements are needed in the high-latitude driver of GCMs.
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50° MLAT
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