Intense Poynting flux observed at very high latitude during magnetic storms

Yanshi Huang¹ Cheryl Huang² Yi-Jiun Su² Marc Hairston³

¹COSMIAC, University of New Mexico, Albuquerque, NM ²AFRL, Space Vehicles Directorate, Kirtland AFB, NM ³University of Texas at Dallas, Dallas, TX

Weimer05 vs DMSP of Poynting Flux

- August 2011 storm, main phase, northern hemisphere (NH).
- Disagreement of magnitude and location.
- Clear enhancement of Poynting Flux inside ion flow reversal boudaries, which is missed by empirical model simulation.
- Question: where does the EM energy deposit during the main phase of magnetic storms?

Solar wind and IMF conditions

 August 5, 2011 storm: moderate storm with enhanced solar wind pressure. Main phase is between the two vertical red lines.

Indication of Polar cap area: Convection Reversal Boundaries (CRBs)

- Black plus signs: ion drift velocity measured along a path of DMSP F16 over the northern hemisphere during main phase of August 5, 2011 storm.
- Blue line: smoothed velocity using a moving window of 20 secs.
 - Sunward: auroral zone
 - Anti-sunward: polar cap
- Clear correlation of drift velocity and PF.
- Strong PF is located poleward of CRBs that correlates with the anti-sunward flow in this region.
- PF is intense where the flow is strong, and is weak where the flow reversals.

Track-integrated Poynting Flux(TIPF)

Bin averaged PF

- August 2011 storm, main phase
- DMSP F15, 16, 18
- Bin size:
 - 2° MLAT × 1 hr MLT
- Clearly enhanced
 PF poleward of 75
 MLat in the dayside
 and nightside.
- Equator-ward
 Extended polar cap
 to 60 MLAT during
 main phase.

14 moderate storms (-100>Sym-H>-200 nT)

DMSP PF vs TIEGCM Joule heating

- Bin average of all the DMSP passes in the main phase of August
 5, 2011 storm, NH
- TIEGCM Resolution: $5^{\circ}lat \times 5^{\circ}lon$
- Different locations, different magnitudes

DMSP PF vs TIEGCM Joule heating

- Bin average of all the DMSP passes in the main phase of August
 5, 2011 storm, SH
- No polar cap feature in SH for the model results.

Summary

- We investigated the Poynting Flux measured by DMSP satellites (F15, F16, F18) during magnetic storms.
- We defined the area of polar cap using CRBs.
- Polar cap can extend equator-ward to 60 degree MLat during main phase.
- Clear enhancement of Poynting Flux was found in the polar cap, which is comparable to that in the auroral zone during main phase.
- Track-integrated flux often peaks at polar latitudes.
- Energy enters IT system at all local times in polar cap.
- Improvements are needed in the high-latitude driver of GCMs.

14 moderate storms (-100>Sym-H>-200 nT)

