

Conductivities consistent with FACs in the AMPERE-driven TIEGCM

Santi Marsal¹, Art Richmond², Astrid Maute²

¹Observatori de l'Ebre, CSIC - Universitat Ramon Llull. Roquetes, Spain. ²High Altitude Observatory/NCAR. Boulder CO, USA.

2013 GEM Mini-Workshop, December 8

Outline

- The AMPERE-driven TIEGCM
- Conductivities consistent with FACs
 - The diffuse aurora
 - The discrete aurora
- First results
- Summary and conclusions

The AMPERE-driven TIEGCM

Input:

Electrodynamo equation $J_r^{AMP} \xrightarrow{\downarrow} \Phi$

- Default conductivities and wind-driven terms depending on K_p and F10.7.

The AMPERE-driven TIEGCM

Output:

00 LT

Electric potential (contours) and heightintegrated ionospheric currents (arrows) over the Northern Hemisphere. Ground magnetic signature essentially produced by the ionospheric current system (horizontal components represented by arrows; vertical comp. represented by contours).

The AMPERE-driven TIEGCM

Results:

Comparison between modeled (blue line) and observed (black line) magnetic components at Tromsø (TRO) and College (CMO) auroral observatories.

Marsal, S., A. D. Richmond, A. Maute, and B. J. Anderson (2012), Forcing the TIEGCM model with Birkeland currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, J. Geophys. Res., 117, A06308, doi:10.1029/2011JA017416.

Regions of enhanced upward (AMPERE) currents at the top of the ionosphere must be affected by increased ionization and conductivity.

Knight's (1973) formulation:

$$J_{\parallel} = e \left\{ N_{S} \sqrt{\frac{kT_{S}}{2\pi m_{e}}} \left[B_{r} - (B_{r} - 1)e^{-\frac{eV}{kT_{S}(B_{r} - 1)}} \right] - N_{I} \sqrt{\frac{kT_{I}}{2\pi m_{e}}} \left[B_{r} - (B_{r} - 1)e^{-\frac{eV}{kT_{I}(B_{r} - 1)}} \right] e^{-\frac{eV}{kT_{I}}} \right]$$

Zhang and Paxton (2008):

 ${
m K}_{
m p} \Longrightarrow Q$, ${
m ar E}$ at each ionospheric point

Our approach: the diffuse aurora

Our approach: the discrete aurora

Input AMPERE FACs

Output Hall conductivity for standard TIEGCM

Input AMPERE FACs

Output Hall conductivity consistent with FACs

Input AMPERE FACs

Output Hall conductivity consistent with FACs

First results

Comparison between modeled (blue and red lines) and observed (black line) magnetic components at College (CMO) observatory.

- Observed variation
 - Modeled using our first approach
 - Modeled with conductivities consistent with FACs
- Our new approach can explain:
 - 54 % of the X variation -> 1 % improvement
 - 65 % of the Y variation -> 15 % improvement
 - 7 % of the Z variation -> 10 % improvement

Summary and Conclusions

- We have made TIEGCM conductivities consistent with FACs measured by AMPERE.
- Our approach improves the "standard" TIEGCM substantially.
- Horizontal components of the geomagnetic field are better reproduced than vertical component. Typically 40 % to 60 % of the observed horizontal variation can be modeled, vs. 0 % to 10 % of the vertical variation.
- Preliminary results of our new approach show a moderate improvement with respect to our previous approach, typically below 10 %. We must investigate why.