# High-Latitude Ionospheric Drivers and their Effects on Wind Patterns in the Thermosphere

Lucas Liuzzo
University of Michigan
12/8/13





#### Model

- Neutral winds are modeled using the Global Ionosphere-Thermosphere Model (GITM)
- Multiple high-latitude drivers are used to model the winds
- Resulting winds are compared to data from Scanning Doppler Imager (SDI) instruments located throughout Alaska
- Ion-neutral coupling is also considered





# Inputs Considered

- High-latitude drivers varied in GITM:
  - Electric Potential
    - Weimer
    - SuperDARN
  - Auroral Precipitation
    - Fuller-Rowell and Evans (NOAA)
    - OVATION Prime
    - OVATION-SME
  - Ionospheric Dynamo





#### Select Runs

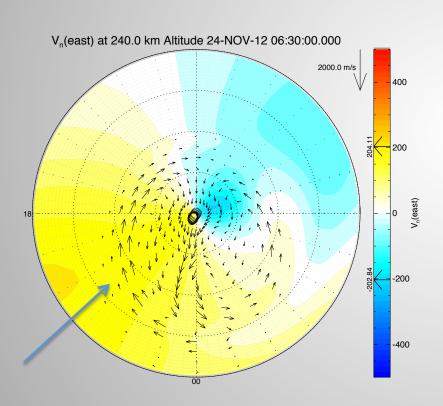
| Run ID              | Potential | Aurora        | Dynamo | RMS    | ABS     |
|---------------------|-----------|---------------|--------|--------|---------|
| SdOs6mD50           | SuperDARN | OVATION-SME   | Yes°   | 103.43 | -13.181 |
| SdOs <sup>D</sup>   | SuperDARN | OVATION-SME   | No     | 104.12 | -12.764 |
| WOs <sup>1, D</sup> | Weimer    | OVATION-SME   | No     | 107.70 | 46.243  |
| SdOp <sup>D</sup>   | SuperDARN | OVATION Prime | No     | 121.92 | 5.5685  |
| SdOsD <sup>D</sup>  | SuperDARN | OVATION-SME   | Yes    | 150.67 | 57.924  |
| WOsDD               | Weimer    | OVATION-SME   | Yes    | 163.12 | 107.26  |
| SdOpD50             | SuperDARN | OVATION Prime | Yes°   | 169.43 | 120.95  |
| WN <sup>1, D</sup>  | Weimer    | NOAA          | No     | 191.79 | 156.35  |
| SdOpD <sup>D</sup>  | SuperDARN | OVATION Prime | Yes    | 198.56 | 97.629  |
| WNDD                | Weimer    | NOAA          | Yes    | 281.19 | 239.69  |

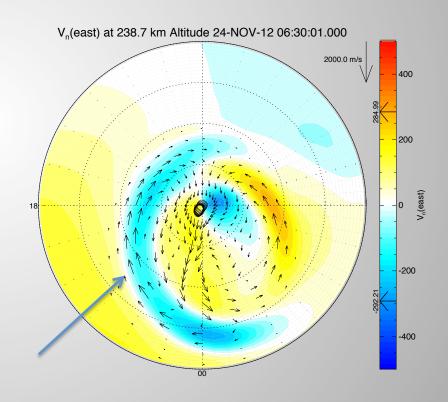
<sup>°</sup> Dynamo located at 50 degrees latitude.

- Multiple runs using differing high-latitude ionospheric inputs as drivers
- Root mean square and absolute errors between GITM simulated winds and SDI observed winds





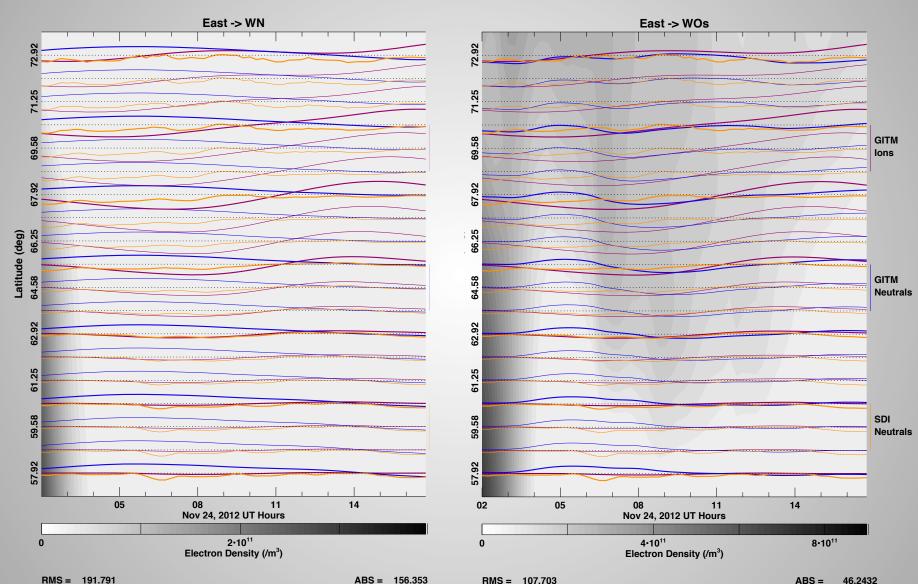

<sup>&</sup>lt;sup>1</sup> Note the improvement in RMS and ABS errors by changing the auroral precipitation input.


<sup>&</sup>lt;sup>D</sup> A dynamo located at 70° latitude significantly decreases the accuracy of the modeled winds.

#### Neutral E-W Flow with Ion Flow Vectors

Weimer + NOAA

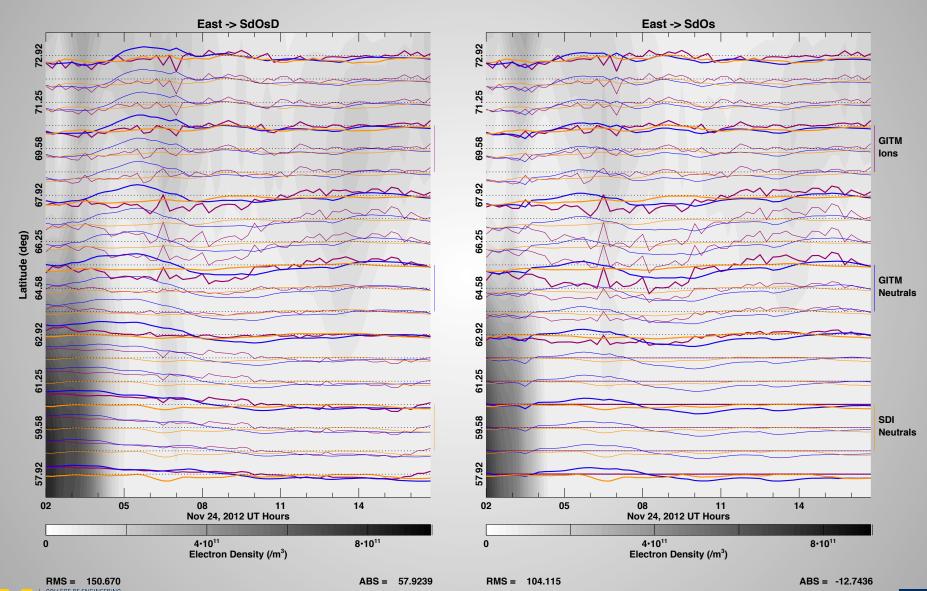
Weimer + OVATION-SME











## Simulated and Measured Winds







## Simulated and Measured Winds



ATMOSPHERIC, OCEANIC AND SPACE SCIENCES



#### Conclusion

- Use of different high-latitude drivers drastically affects resulting neutral winds
- An ionospheric dynamo at 70° prevents correct modeling of high-latitude neutral winds
- Accurate models of electric potential and auroral precipitation must be used to correctly model winds
- Poster presentation Wednesday, 8:00a-12:00p,
   Moscone South, ID # 1807823



