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Y
/ IT Coupling During the August 2011 Magnetic Storm
3 Ongoing Research Studies
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A magnetic storm occurred on 5-6 August, with onset at 1906 UT on 5 August (day 217),
and recovery beginning at 0322 UT on 6 August (day 218).

Minimum Sym-H is -126 nT.

(1) Energy budget: Methodology - compute energy budget for storm including ionosphere,
thermosphere and ring current sinks, using a combination of models and data.

lonospheric sink: Use Weimer (2005; 2011) model (WO05), modified by DMSP Poynting flux
measurements and Hemispheric Power due to particle precipitation.

Thermospheric sink: Use method outlined by Burke et al (2009) to compute total energy
change in ionosphere during the storm.

Ring current sink: Use Dessler-Parker-Sckopke relation with Sym-H index.

(2) Direct observations of Joule heat: Analyze ion temperatures during DMSP overflights of
the polar caps during August and October 2011 magnetic storms.

(3) lonization due to particle precipitation at high latitudes: Use DMSP measured particle
precipitation flux to estimate ionization rate using Fang (2010; 2013) models. Compare
with default ionization used in Global Convection Models (GCMs).
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High Latitude IT Coupling During
\‘.'/ Magnetic Storms
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\/ Estimate of lonospheric Energy During
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Estimate of Thermospheric Energy During
\/ Storm

Methodology: Assume neutral densities can be related to temperatures using a
Jacchia-like model.

All Jacchia-like models are parameterized by Tc, the nighttime minimum in the
global exospheric temperature. Once Tc is specified, all number densities,
mass densities and temperatures are specified.

We fit number densities from models (HASDM, Jacchia-Bowman 2008, W05)
and observations (GRACE) to find Tc which then specifies the thermosphere.

The thermospheric energy is estimated as:
E=H;+ &,

where H; is the thermal energy in the thermosphere and @ is the work done
against gravity [Burke et al., 2009].
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The Energy Budget
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\ 4 Polar Cap as a Source of Missing
\"/ Energy?

174 R Liu et al.: Storm-time related mass density anomalies in the polar cap
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\/ GRACE Neutral Densities During
N7 Storm Main Phase
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1.The GRACE observations agree with results of Liu et al (2010) and indicate that thermospheric
heating occurs in the polar cap, and not at auroral latitudes.

2. The time delay from storm onset to appearance of heated neutrals is minutes, and not hours.




GRACE Observations During August Storm
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\ /) August 2011 storm
A\,

q:' lon Temperatures, Horizontal Velocities from DMSP F16
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DMSP F16 Plasma Temperatures and Velocities in the

Northern hemisphere during the October 2011 storm
(Storm onset ~ 2233 UT on DOY 297)
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DMSP F17 Plasma Temperatures and Velocities in the

Northern hemisphere during the October 2011 storm
(Storm onset ~ 2233 UT on DOY 297)
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Polar Cap Crossing Starting at 0048 UT on 6 August
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\/ DMSP F16 Particle Precipitation During August
«Qr 2011 Magnetic Storm (0030 UT — 0106 UT)
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\/ Electron and lon Impact lonization Rates with Fang
N7 (2010; 2013) model and NRLMSISE-00
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\/ Comparison of Total lonization Rates using DMSP
% Particles and Fang (2010; 2013) and GCMs
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\/ Summary
«QQr

The energy budget for a magnetic storm in August 2011 shows a deficit in
lonospheric energy sufficient to account for thermospheric heating

GRACE measurements show Joule heating in the polar cap, in agreement with Liu et
al (2010)

DMSP measurements of plasma temperatures show increased T, in the polar cap,
and not in the auroral zone, during magnetic storms in August and October 2011

The DMSP orbit during the time after storm onset in both cases does not reach
magnetic latitudes greater than ~ 83°. Could this contribute to missing Poynting flux
during the August storm?

Using DMSP F16 particle precipitation spectra, the ionization due to electrons and
lons was modeled for a polar cap crossing which showed ionization at F-region
altitudes.

Do IT coupling and energy dissipation occur primarily within the polar cap? What are
the mechanisms?
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