GEM Workshop 2015

Real-time SWMF Geospace: Magnetopause comparisons

Michael W. Liemohn

Darren De Zeeuw, Jeff Kopmanis, Natasha Ganushkina, Dan Welling, Gabor Toth, Aaron Ridley, Raluca Ilie, Tamas Gombosi

Atmospheric, Oceanic, and Space Sciences Dept., U Michigan

Masha Kuznetsova, Marlo Maddox, Lutz Rastaetter

Community Coordinated Modeling Center, NASA Goddard Space Flight
Center

Real-time SWMF

- CCMC has been running a geospace configuration of SWMF in real time since 2007
 - Just the GM and IE physics modules
 - So, only BATS-R-US and the Ridley Ionosphere Model
 - Fairly low grid resolution (<1 M cells) for MHD code
- New version running since 2011
 - Three physics modules: GM, IE, and IM
 - So, now with the Rice Convection Model for near-Earth keV plasma solution
 - Better grid in MHD code and some other improvements

Magnetopause values from the runs

As of today, Rmp is only available from the SWMF2007 configuration

Comparing with something

Shue et al. magnetopause model:

$$r_{MP} = \{10.22 + 1.29 \tanh[0.184(Bz + 8.14)]\} \left(\frac{1}{p_{SW}}\right)^{\frac{1}{6.6}}$$

- Just did this analysis this week:
 - Downloaded OMNI solar wind for March 2015 on
 - They have values until mid-May
 - In this set: 70 days of overlap
- Calculate stats on the minimum Rmp for each day
 - Correlation, contingency table, and other values

The Real-time Rmp Values

■ First, let's look at the SWMF and Shue values

The contingency table

- Four-part table of integer values
- The quadrants have names:
 - **Hits:** both model and data are in the state
 - **Misses:** data in state but not the model
 - False alarms: model in state but data not in state
 - Correct negatives: both data and model not in state

Contingency Table	Model in the state	Model not in state
Data in state	Hits (H)	Misses (M)
Data not in state	False Alarms (F)	Correct Negatives (N)

Derivative Values From the Table

- Probability of Detection:
 - Ranges from 0 to 1
 - Want it <u>high</u>

- $POD = \frac{H}{H + M}$
- Probability of False Detection:
 - Ranges from 0 to 1
 - Want it <u>low</u>

 $POFD = \frac{F}{F + N}$

- Heidke Skill Score:
 - Max is 1
 - \blacksquare = 0 is = random
 - < 0 is...well...bad

$$HSS = \frac{2[(H \cdot N) - (M \cdot F)]}{(H + M)(M + N) + (H + F)(F + N)}$$

Contingency Tables

- Shue cutoff = $8 R_E$

Contingency Table	$Rmp_M < X_M$	$Rmp_M > X_M$
$Rmp_S < X_S$	H = 8	M = 14
$Rmp_S > X_S$	F = 14	N = 34

POD = 0.36 POFD = 0.29HSS = 0.072

HSS ~0: random luck

Can we interpret this?

Summary

- Experimental real-time SWMF-Geospace runs exist at CCMC
 - One output: magnetopause values
- For the SWMF-2007 version (GM-IE only):
 - Not very good compared to Shue et al. formula
 - At least not for the 2.5 months I examined
- Things to do:
 - Go back through all 8 years of values
 - Do it with the same solar wind input (i.e., r-t values)
 - Do it for the SWMF-2011 version of the code
 - Do it against other Rmp empirical models