FAC validation in global MHD

Slava Merkin JHU/APL

Fedder et al. [1997]

Fedder et al. [1997]

"The agreement between the curves is remarkable"

"The agreement between the curves is remarkable"

"It is satisfying that the simple method chosen worked so well"

Limited FAC data sources

FAC patterns compared with AMIE

Raeder et al. [2001]

Limited FAC data sources

FAC patterns compared with AMIE

+ ground mags and DMSP magnetometers, e.g., [Ridley et al. 2001]

Iridium patterns

Korth et al. [2004]

Iridium patterns

Korth et al. [2004]

Discrepancy due to strong nightside Hall current in the simulation

Iridium patterns and DMSP cross-validation

Steady northward IMF conditions

Merkin et al. [2007]

Iridium patterns and DMSP cross-validation

Steady northward IMF conditions

- Iridium allowed global comparisons.
- Revealed close agreement with simulation.
- In-situ validation still important. Model under-resolved.

Merkin et al. [2007]

AMPERE: Global and nearly simultaneous coverage

10-min global FAC patterns vs high-res LFM

AMPERE: Global and nearly simultaneous coverage

10-min global FAC patterns vs high-res LFM

Merkin et al. [2013]

• What is the actual solar wind driver?

- Steady state prior to shock arrival
- Good agreement of FAC morphology

- After shock arrival
- Only dayside currents updated in AMPERE
- Nightside: stale data

AMPERE LFM/Wind LFM/THC 12 12 12 17:16:00 North North North 17:25:41 17:25:58 17:26:00 10°20° 20 10° min: -0.7 max: 1.0 min: -1.6 max: 3.3 min: -1.2 max: 4.4 (b) (a) (c) ٨r 00 00 12 12 17:40:00 12 17:47:56 17:48:13 17:50:00 30 20° 20 10 06 min: -3.6 max: 4.9 min: -2.3 max: 7.6 min: -0.7 max: 1.1 (d) (e) (f) 00 00 00 17:50:00 17:59:33 17:59:50 18:00:00 06 min: -2.4 max: 5.7 min: -3.3 max: 7.7 min: -1.2 max: 1.8 (h) (g) (i) 00 00 00 12 12 12 18:02:00 18:11:08 18:11:20 18:12:00 06 min: -4.7 max: 8.2 min: -3.2 max: 6.6 , min: -2.2 (I) (j) (k) max: 2.1 00 00 00 -3.0 -1.5 0.0 1.5 3.0 -3.0 -1.50.0 1.5 3.0 -0.5 0.0 -1.00.5 1.0 Current density, µA/m² Current density, µA/m² Current density, µA/m²

- After shock passage
- All currents updated in AMPERE
- Good agreement of morphology, including R2

- After northward IMF rotation
- Good agreement of morphology, including R2
- Convection throat orientation not fully captured in AMPERE because it falls between Iridium tracks

Iridium dB

LFM dB

LFM FAC

AMPERE FAC

(c)

(f)

(i)

(I)

- Model FAC change rapidly in response to shock. AMPERE pattern does not resolve the time evolution.
- Time-dependence is a major challenge.
- But if you are careful and patient, significant information can be extracted from individual spacecraft tracks.

- AMPERE FAC density lower than LFM.
- Is it true for dB magnitude?
- dB magnitudes agree very well in regions where sheet currents are a good approximation.

Feature-based model validation

Feature FAC detection 0.6 0.4 LFM 0.2 18 . 9 0.0 -0.2 -0.4 -0.6 0 0 AMPERE 0.5 18 18 0.0 -0.5 0 0

Kleiber et al. [2015]

Agglomerative clustering

Wiltberger et al. [2016]

Same event as Merkin et al. [2013]

Feature-based model validation

Agglomerative clustering Feature FAC detection Single Double 0.6 b а 0.4 LFM 0.2 18 18 0.0 18 06 18 06 -0.2 -0.4 -0.6 min: 0.00 min: 0.00 00 00 max: 4.00 max: 4.00 0 0 Quad Weimer С d AMPERE 0.5 18 3 0.0 ٤8 06 18 06 -0.5 min: 0.00 max: 4.00 min: 0.00 max: 4.00 00 00 0 0 Kleiber et al. [2015] 2 1 3 $J_{||}$ Type

Same event as Merkin et al. [2013]

Wiltberger et al. [2016]

• New types of validation enabled by global data sets

Global ionosphere datasets: Going beyond a single parameter

- AMPERE, SuperMAG and SuperDARN (together with SUSSI, etc.) can now be used to provide global simultaneous maps of key ionospheric electrodynamic parameters.
- Proof of principle: current-voltage relationship compared with Weimer model.

Gordeev et al. [2015]

Summary

- Global observational FAC patterns became available only recently.
- Together with other global ionospheric data sets they provide a new type of a validation tool for global codes.
- Validation exercise gets more complicated: "global" usually means temporal and spatial dimensions are intermingled. Timedependent comparisons are a challenge on fast scales, but possible if care is taken.
- New types of comparison algorithms need to be developed, e.g., pattern recognition. Efforts are already underway.
- Combined analysis of available ionospheric datasets with models provides insight into the physics of the system previously impossible to glean.