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1. Overview of Recent DMSP Poynting Flux
Studies

2. Sensitivity of Poynting Flux To Single Velocity
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F-15 Poynting Flux Comparison 2000-2005

-Combined DMSP F-15
Poynting flux data from 2000-
2005, in NH and SH
according IMF By

-When the IMF By component
is large, significant Poynting
flux is deposited in the
dayside. Deposition may
exceed 170 m\W/m2?—an order
of magnitude above typical
auroral values.

-Empirical Joule heat models
do not capture this result.

Extreme Poynting Flux in the

Dayside Thermosphere: Examples
and Statistics [Knipp et al., 2011,

GRL]

IMF By Influence

NH B, -

(Dawn Flank/Lobe Merging)

SH By+

Intervals of large IMF By produce enhanced, and even extreme,
Poynting flux deposition into the dayside thermosphere. These
events have now been simulated to good agreement with the
OpenGGCM MHD model.

(Dusk Flank/Lobe Merging)
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Poynting Flux

Sawtooth Oscillations vs Steady Magnetospheric Convection
McPherron et al., 2008

Sawtooth Oscillation/Injection:

*Steady solar wind input, but typically stronger
than SMCs

*Periodic GEO particle injections

*Large periodic substorms

*Intense Poynting flux deposition

Event List From Cia

Steady Magnetospheric Convection:

*Steady and relatively slow, solar wind input
*No substorm activity (but often before or after)
*Relatively constant auroral diameter
*Moderate Poynting flux deposition in/near
auroral oval

*~Three time more prevalent than Sawtooth
events

Event List From Kissinger

Sawtooth _Oscillation

Northern Hemisphere
Sawtooth: 2000-05

Southern Hemisphere
Sawtooth: 2000-05

Steady Magnetospheric Convection
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DMSP Poynting Flux in
Auroral Boundary Coordinates
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*Each dot represents

During this relatively quiet month long interval there is: me m?ﬁi]mum value of
*Ubiquitous low level polar cap Poynting Flux © ofihe pass
*Concentration of Poynting flux in mid morning hours in PC and AZ

Auroral Boundary Coordinates defined by Redmon et al. (2010)
*Determined by particle flux characteristics from DMSP
*PC = polar cap; AZ = Auroral Zone



Limitations
Using DMSP F15 data only—WHY?

*Need across and along E and dB
* Reliable or at least Quality Flagged for F15 only
* Along track E for F16 and beyond is uncharacterized

*‘Need uncertainty estimates for F15
v E from Univ of Texas Dallas
v dB from Knipp et al 2014 and 2015
v" PF from Rastatter et al 2016

*Uncertainty estimates For F16 and beyond
v dB from Knipp et al 2014 and 2015
v Single component E thus single component PF
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DMSP Poynting Flux

'‘Spacecraft’

Coordinate Frame 1
X — along track SZ — —(Edey — Eyde)
Y — across track u 0
Z — radial (up)

SSM Magnetometer

I
1 - i ]
S, = —(—[vyB.]dB, — [v;B.]dB,)
0 x T

SSIES Cross Track Velocity SSIES Ram Velocity

From lon Drift Meter From Retarding
Potential Analyzer

*for simplicity, the terms vz*Bx,y in the electric field expressions have been neglected. They are
usually are 5 — 10 times smaller than the Bz terms



The Ram Velocity (Vx) from RPA has Often Been
Considered Questionable
And It's Contribution Removed

Resulting In the Approximation:
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Ram Velocity (Vx)

Has greater baseline variability and noise at many
~2000 times. When is it okay to use?

Without quality information many just throw it out.
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Poynting Flux Separated Into Components
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A Study of Change in Second-To-Second DMSP Poynting Flux
* Examines deviation from stationarity

when information going into the IDM QF RPA QF
calculation is changed PFQF1 IQF1 RQF1
* Shows the largest effects when a PFQF2 IQF2 RQF1
component of the velocity is PFQF3 Jst RQF2
neglected (PFQF 9,6 and 5) rrar ar2 i
PFQF5 IQF1 X
PFQF6 IQF2 X
PFQF7 X RQF1
100 PFQF8 X RQF2

PFQF9 |IQF4 X

Difference In Flux Between Adjacent
Points with Different Quality
8
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Poynting Flux
From Rastatter et al, 2016 PFQF1:
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SEDA Group DMSP Reprocessing Project

* NASA-funded project to reprocess DMSP particles
and fields data into Level 2 data products
* Addition of best estimate of uncertainty
* Archival at virtual observatory

* SSJ Precipitating ions and electrons data now
available at NASA CDAWeb
* F16, F17, F18 for 2010-2014

* SSM Magnetometer data now available at NASA
CDAWeb
* F16, F17, F18 for 2010-2012 (more coming soon)

CMSF COAWeb Irventory
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TME RENGE=2010/1/1 to 2014/12/31

Bepergted by D0AWeb on Man Jun 13 11:41:18 2016



All Instruments (SSM,SSJ,SSIES)

More Accurate Spacecraft Locations in Geocentric
and Magnetic Coordinate Systems

Interpolator is comparable in accuracy with
Ephemeris TLE-based orbit propagation with SGP4
(Vallado), and much computationally cheaper
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SSM Magnetometer
Level 2 CDFs (3 years now at CDAWeb)

Improvement 1:

Recomputed magnetic perturbations (dB=B_,.. —B

DMSP IGRF)

with proper IGRF for new, more accurate s/c locations
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Effect of Recomputing Magnetic Perturbations for F16 on Tue Dec 31 00:00:00 2013
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Change in IGRF B/sec Along Spacecraft Path



SSM Magnetometer
Level 2 CDFs (3 years now at CDAWeb)

Improvement 2:

Residual baseline removal, leaving only magnetic
perturbations from ionospheric current systems (MFIT
process)

e SC Across-Right dB — Fit (STDERR=19.230 nT) - Corrected (Qual=-0.3)

o

SC Across-Right dBz [nT]
%)
8




SSM Magnetometer
Level 2 CDFs (3 years now at CDAWeb)

Improvement 3:

* Rotated vector measurements from spacecraft aligned
coordinates to geocentric and main-field-aligned
coordinate systems (Apex)
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SSM Magnetometer

Level 2 CDFs (3 years now at CDAWeb)

Improvement 4:

* Automated Auroral Boundaries

From SSJ Instrument

* Based on Redmon et. al. 2010

method, now incorporating
uncertainty information in new SSJ
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Single Spacecraft FAC Estimation

Typical Assumptions for Single Spacecraft FAC estimation:
1. Current Sheet of finite width, but infinite length
2. Spacecraft crosses current sheet perpendicular to it's

long direction
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SSM Magnetometer

Minimum Variance Analysis (MVA)
Minimum Variance Analysis Technique Goal:

Estimate Spacecraft Crossing Current Sheet Geometry
(precisely: estimate the angle that the spacecraft velocity vector
makes with the current sheet normal, aka attack angle

J | 1 AdB,

Rotation of dB vector

that gives dB in x,y,z
coordinates must be
estimated statistically,

9 via principal component
attack analysis (PCA)

Uy = U c0S(Oattack)




SSM Maanetometer: MVA Process

2 orbit (equator to equator) SSM dB
Recomputed and Baseline Corrected
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SSM Maqnetometer FAC Process
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SSM Magnetometer:
FAC Example
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MVA shows that the FACs here have their long axis northward of magnetic
east-west direction (attack angle is about ~40 degrees)



Thank You!

Questions?



Backup
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SSJ Auroral Boundary finding algorithm based on Redmon et. al. (2010) method,
Boundaries but incorporating uncertainty information

1. ldentify regions of continuously above-threshold (shaded green) integrated SSJ electron
energy flux with electron energy > 1 KeV as candidates for the dusk/dawn auroral crossing

Integrated Flux (9 Highest E Channels 30000.00eV-1392.00eV)

1012
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1010
10° —Threshold _
10° ! L - N *+  Smoothed Int >1KeV Flx
107 | I i - Relative Uncertainty
10° ) i —— Threshold
e Candidates for — EQ1
i duskside — PO1
o> and dawnside e | [ | g - Po2

g ] — EQ2
102 auroral Crossings \
101 \
10° - e e e e e - P TN Aastr N NN JtP NP
10'1 - n"\ﬂwvai.:‘““_" ﬁ

70500 71000 71500 72000 72500 73000 73500
) UT Second of Day i
Duskside Dawnside

Final Choices For Auroral Region
2. Choose best 2 candidate regions by maximizing a scalar, dimensionless figure of merit (FOM)
computed for each possible combination.
FOM rewards combinations with:
1. larger polar caps
2. smaller total uncertainty in above-threshold region
3. wider duskside and dawnside crossings



SSJ Auroral
Boundaries
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1010

10°

Boundary finding algorithm based on Redmon et. al. (2010) method,
but incorporating uncertainty information

Integrated Flux (9 Highest E Channels 30000.00eV-1392.00eV)
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Unified DMSP (SSM + SSIES + SSJ) Processing Flow

Total Field
" And Corrected
Perturbations

v



Recomputing Magnetic Perturbations At New Locations
Blue: X — Down, Red: Y — Along Track / Ram, Green: Z — Across Track (To Right)
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Effect of Recomputing Perturbations:
Same Size As Change in IGRF Field Over 7km At DMSP Altitude



Correcting SSM Baseline

Odd-order polynomial (red) is
fit to each component of the
original magnetic field data
(blue) and subtracted

Possible source of baseline?
-Boom twist

-Crustal fields not resolved by
IGRF

-Timing/Calibration errors

Grey - portion of the data that
was judged to be outside of the
auroral region and used to fit the
polynomial

Black — Resulting corrected
SSM magnetic perturbations
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SC Along dBy [nT]
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SC Across-Right dBz [nT]
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5 4
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Equatorward Boundary: 59.60 (MIDNITE) 62.60 (POLWRD) 62.60 (EQWRD) (Quality:3)
Observed at UTSec 82845 by DMSP F15 at 63.30,167.40 (GEO),59.50,9.40 (CGM)

® SC DowndB = Fit (STDERR=7.844 nT) = Corrected (Qual=0.1)

e SCAlong dB = Fit (STDERR=10.958 nT) — Corrected (Qual=0.1)
e ————
®  SC Across-Right dB = Fit (STDERR=19.230 nT) — Corrected (Qual=-0.3)

*  Geocentric
AACGM




Mesoscale FAC determination

2 orbit (equator to equator) SSM dB
Recomputed and Baseline Corrected
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