Spherical Barycentric Coordinates: Implications for Metrics and Validation

A. Pembroke¹, B. Curtis², L. Rastaetter¹

1. Goddard Space Flight Center 2. George Mason University

Motivation: Metrics depend heavily on interpolation, but how do we handle the "hard-to-reach" places?

When this matters

Conjugate mapping through MHD models

M-I coupling

DST approximation

Problem areas

Discontinuities

Complexity

Information loss obsfuscation

Work-arounds

dipole approximation

simulate gap region

Spherical Barycentric Coordinates

LANGER T., BELYAEV A., SEIDEL H.-P.: Spherical barycentric coordinates. In Siggraph/ Eurographics Sympos. Geom. Processing (2006), pp. 81088.

Goal: Given a point **p**, compute weights w_i of polyhedron vertices **v**_i, such that:

$$\Sigma_i w_i(\mathbf{p}) \mathbf{v}_i = \mathbf{p}$$
 linear precision $w_i(\mathbf{p}) > 0$ positivity $\Sigma_i w_i(\mathbf{p}) = 1$ partition of unity

step1: Map vertices to sphere centered at \mathbf{p} . $\mathbf{u}_i = \text{norm}(\mathbf{v}_i - \mathbf{p})$

step2: Compute face vectors, s.t.
$$\Sigma \mathbf{v}_F = \mathbf{0}$$
 $\mathbf{v}_F = \Sigma_i \ \phi_{i,i+1} \ \text{norm}(\mathbf{u}_i \times \mathbf{u}_{i+1})$ $\phi_{i,i+1} = \text{angle}(\mathbf{u}_i, \mathbf{u}_{i+1})$

step3: For each vertex incident on face F: $\lambda_1(\mathbf{v}_1 - \mathbf{F}) = |\mathbf{v}_2| + \tan(\alpha_1/2) + \tan(\alpha_2/2) |\mathbf{v}_3|$

$$\begin{split} \lambda_{i}(\mathbf{v}_{F}, \, F) &= \frac{|\mathbf{v}_{F}|}{|\mathbf{v}_{i} \cdot \mathbf{p}|} \bullet \frac{\tan(\alpha_{i}/2) + \tan(\alpha_{i-1}/2)]/\sin\theta_{i}}{\Sigma_{j} \cot\theta_{i} \, (\tan(\alpha_{j}/2) + \tan(\alpha_{j}/2))} \\ \theta_{i} &= \text{angle}(\mathbf{v}_{F}, \mathbf{u}_{i}) \\ \alpha_{i} &= \text{angle}(\mathbf{v}_{F} \mathbf{x} \mathbf{v}_{i}, \mathbf{v}_{F} \mathbf{x} \mathbf{v}_{i+1}) \end{split}$$

step4: Final weights given by $w_i = \omega_i(\mathbf{p})/\Sigma_j\omega_j(\mathbf{p}) \\ \omega_i(\mathbf{p}) = \Sigma_{F(i)} \; \lambda_i(\mathbf{v}_F, \, F) \\ \text{Where F(i) represents all faces incident on vertex i}$

Spherical Barycentric Coordinates

Limiting Behavior on faces: Floater Coordinatees

Floater, Michael S. "Mean value coordinates." Computer aided geometric design 20.1 (2003): 19-27.

i.c.b.s.t. as **p** approaches face F, $\theta \rightarrow pi/2$ and weights approach Floater's coordinates:

$$w_i = \left\{ \begin{array}{ll} \omega_i(p)/\Sigma_j \omega_j(p) & \text{if i incident on F} & \omega_i(\boldsymbol{p}) = \underline{tan(\alpha_i/2) + tan(\alpha_i-1/2)} \\ 0 & \text{otherwise} \end{array} \right.$$

Kameleon-plus Implementation

CCMC's Access and Interpolation Library https://code.google.com/p/ccmc-software/

ccmc::Polyhedron<T>

Public Variables:

weights: {0, 0, 0, ...}

vertices: {v0, v1, v2...v7}

loops: {0, 4, 6, 2, 4,5,7,6, 1,3,7,5} //index

into vertices (normal oriented by right hand rule)

faces: {0, 4, 8, 16, 20, 24} //index into loops

Public Methods:

void setPositions(std::vector<Vector<T>> positions)

void setLoopsFaces(std::vector<int> loops, std::vector<int> faces)

void setBarycentricCoordinates(Vector<T> point)

bool isPointInside(Vector<T> point)

int getClosestFace(Vector<T> point)

void saveAsDXObject(string filename)

Vector<T> testLinearity(Vector<T> point)

Virtual Methods:

int getType()

Polyhedron<T>* getNextPolyhedron()

Application: Analaysis on LFM Mesh

LFM Mesh (outer boundary)

Bow-shock weighted equatorial plane, rotated around earth-sun line.

2 x ni-1 axis cells nk+2 faces each

ni*nj*nk hexahedra

1 Inner Boundary

Application: Interpolation on LFM Mesh

"You must construct additional Pylons!"

class GridPolyhedron: public Polyhedron<T>

class AxisPolyhedron: public Polyhedron<T>

class IPoly: public Polyhedron<T>

LFMInterpolator::interpolate(variable, point)

```
getCell(point){
    searchCell = kd-tree(point) //gets cell with closest centroid
    while(!searchCell.isInside){        //insures that point is actually inside the output cell
        searchCell = getNextCell(searchCell) //uses closest face to search locally
        searchCell.setBarycentricCoordinates(point)
    }
}
searchPoly = getCell(point)
searchPoly.setBarycentricCoordinates(point)
for each v; in searchPoly{
    result += variable(globalIndex(v;))*w;
}
return result
```

Results: Field line Entropy Analysis

LFM-RCM coupled run at quad Resolution

Results: Low-latitude mapping

Fieldlines mapped continuously through inner boundary to earth

Behavior near earth center: field direction consistent with dipole but magnitude -> 0!
This is because we are interpolating vectors, not fluxes!

Future Work:

DST approximation, current interpolation, particle tracing

What is the flux through an arbitray polygon?

What about edge-based E-fields? Currents?

Future Work: Whitney Forms!

Hirani, A. N. *Discrete exterior calculus (dissertation)*. Technical report, California Institute of Technology, 2003.

Luckily, all of the parameters we are interested in have a natural framework for interpolation using the so-called "Whitney Forms"

The whitney forms are constructed from combinations of **barycentric coordinates** in the vertices. For a 2-form, each face gets a weight determined by the barycentric weights of incident vertices:

$$W([v_1,v_2,v_3]) = 2(\omega_1 \mathbf{d}\omega_2 \wedge \mathbf{d}\omega_3 - \omega_2 \mathbf{d}\omega_1 \wedge \mathbf{d}\omega_3 + \omega_3 \mathbf{d}\omega_1 \wedge \mathbf{d}\omega_2)$$

d is called the **discrete exterior derivative**, a fully generalized version of grad, curl, div., while Λ is the discrete "wedge product"

Francesca Rapetti, Weights computation for simplicial Whitney forms of degree one *Comptes Rendus Mathematique*, Volume 341, Issue 8, Pages 519-523