

Royal Belgian Institute for Space Aeronomy
Institut royal d'Aéronomie Spatiale de Belgique
Koninklijk Belgisch Instituut voor Ruimte-Aeronomie

SEP Scoreboard

M. Dierckxsens

Working Meeting: Community-wide space weather scoreboards: research assessment of real-time forecasting models and techniques ESWW 13, 14-18 November 2016

Agenda

Discussion based around the following topics:

- General introduction: What is the scoreboard, how to register and submit forecasts (M. Dierckxsens)
- XML Schema for submission of forecasts; quantities and observations to compare (M. Dierckxsens)
- SEP Scoreboard display mock-ups: Probability chart and flux profiles, Probability chart time-series (L. Mays)
- Comparisons using historic SEP events (M. Dierckxsens)
- Validation techniques: metrics, skill scores,... (M. Dierckxsens)
- Linking flare & CME forecasts with SEP forecasts through scoreboard (L. Mays)

INTRODUCTION

Introduction

- SEP Scoreboard for near real-time forecasting methods validation currently being developed by:
 - BIRA-IASB: M. Dierckxsens, N. Crosby
 - UK Met Office: M. Marsh
 - CCMC: L. Mays, M. Kuznetsova
- Community effort: input, feedback and participation from everyone is appreciated

http://ccmc.gsfc.nasa.gov/challenges/sep.php

Existing SEP Forecast Models

Overview of available SEP models/forecasts (M. Marsh)

Model Type	Model Name	Principal Developer(s)	Observational Inputs	Outputs
Empirial	AFRL PPS	Stephen Kahler (AFRL)	GOES x-ray peak flux & location	E>5 MeV intensities
Physics	EPREM	Nathan Schwadron (UNH)	Can be driven by in-situ proton observations, can be coupled with MHD	User defined flux range, also dose calculations within EMMREM framework
Physics	FLAMPA (SWMF)	University of Michigan	SWMF module coupled with MHD	
Empirical	FORSPEF	Anastasios Anastasiadis (NOA)	Magnetograms, x-ray flares	E > 30,60,100 MeV integral proton energy flux and fluence
Physics	Kota SEP (SWMF)	University of Michigan	SWMF module coupled with MHD	
Empirical	Laurenza model	Monica Laurenza (INAF)		
Physics	Luhmann Model	Janet Luhmann (UCB SSL)	Coupled with WSA-ENLIL+Cone (magnetograms, coronagraphs)	User defined flux range
Empirical	MAG4	David Falconer (NASA/MSFC, UAH)	Magnetograms, x-ray flares	24 hour event probabilistic forecast
Physics	PATH	Gary Zank, Gang Li (UAH)		
Physics & Empirical	PREDICCS	Nathan Schwadron (UNH)		(coupled version of EMMREM and REIeASE)
Empirical	REIeASE	Arik Posner	SOHO/COSTEP-EPHIN high energy electron flux. ACE/EPAM in new version	E=4-9, 9-16, 16-40, 28-50 MeV proton flux
Empirical	SEPForecast (COMESEP)	Mark Dierkzsens (BIRA IASB)	GOES x-ray peak flux & location, CME width & velocity, GLE observations	E>10 MeV and >60 MeV integral proton energy peak flux and probability
Physics	SOLPENCO	Angels Aran (Univ. Barcelona)	CME/Flare location & shock velocity estimate	User defined flux range
Physics	SPARX	Silvia Dalla (UCLan) Mike Marsh (UK Met Office)	Flare location, peak x-ray flux	User defined flux range
Empirical	SWPC PPM	Christopher Balch (NOAA/SWPC)	GOES x-ray, SEON radio burst, H-alpha/EUV imaging	E>10 MeV integral peak proton flux, peak time, and probability
Empirical	SWPC	NOAA/SWPC		Day 1-3 event probabilistic forecast
Empirical	UMASEP	Marlon Nuñez (Univ. Malaga)	Goes x-ray & proton fluxes	E>10 MeV integral proton flux. E>100 MeV proton flux in new version.
Empirical	UK Met Office	UK Met Office		Day 1-4 event probabilistic forecast
Physics	Zhang model	Ming Zhang (FIT)		

Variety of Forecast Models

- Wide variety in types of models and forecasts
- Empirical, physics based or a combination of both
- Identified 3 classes for SEP Scoreboards:
 - Near real-time continuous forecast (e.g. next 24 hrs)
 - 2) Near real-time event driven forecasts (e.g. flares)
 - 3) Non near real-time (e.g. models with long calculation times)
- Different energy ranges: >5, >10, >60, >100, 9-16, ... MeV
- Different parameters: event probability, proton peak flux, fluence, onset time, peak time, duration, ...
- Current focus on classes 1) and 2)

Scoreboard participation

- Anyone providing SEP forecasts and who is interested in participating is welcome and encouraged to do so
- How to participate:
 - Fill in questionnaire concerning details of the models
 - Provide forecasts in specific XML format & upload via FTP
 - Join planning meeting telecoms if desired
- More details on the SEP Scoreboard website

Registered Models

- Currently 3 registered forecast models:
 - UMASEP (M. Núñez, U. de Málaga)
 - Registered and provided first XML files
 - FORSPEF (A. Anastasiadis, NOA)
 - Registered, XML input under development
 - COMESEP SEPForecast (M. Dierckxsens, BIRA-IASB)
 - Registered, XML input under development

XML SCHEME & PARAMETERS TO **COMPARE**

8th CCMC Workshop, 10-15 April 2016

XML Schema for submissions

XML Schema	Type	Comments	
sepforecast	- 112-		
header			
sender	string	optional	1
email	string	optional	
model	string		
forecasttype	string	restrictions ¹	
issuetime	datetime		
predictionwindow		optional	
starttime	datetime		
endtime	datetime	İ	
inputdata	string	optional, >1 possible	
issued forecast		at least 1	
description	string	İ	
source_id	string	optional	
source_url	string	optional, >1 possible	
species	string	restrictions ²	
location	string	restrictions ³	
confidence	decimal	[0.0,1.0]	
event_length		optional	
onset_time	datetime		
end_time	datetime	optional	
event_threshold		optional	
threshold	decimal		
units	string		
time	datetime		
strength			
storm_level	integer	optional, [0,5]	
peak_flux		optional	
flux	decimal	>0.0	
units	string		
time	datetime		
fluence	decimal	optional, >0.0	
fluence	decimal	>0.0	
units	string		
probability		optional	
value	decimal	[0.0,1.0]	
uncertainty	decimal	optional	
value_lower	decimal	optional, [0.0,1.0]	
value_upper	decimal	optional, [0.0,1.0]	
energy_range			
energy_min	decimal	default 0.0	
energy_max	decimal	default -1.0 = infinity	
sep_profile		optional	
units	string		
flux_point		>1 possible	
time	datetime		
flux	decimal	>0.0	

- XML Schema developed to handle as wide a variety of forecasts as possible
- Header element providing details on the model and validity of the forecast
- Issued forecast element(s) providing:
 - description, reference, species, location, confidence
 - event length & threshold
 - strength (storm level, peak flux, fluence)
 - probability
 - energy range
 - flux profile (time series)

Parameters to compare

- > The following forecasted parameters can be submitted:
 - event length (onset, end)
 - event threshold (threshold, units, time)
 - strength (storm level, peak flux & time, fluence)
 - probability (value, uncertainty)
 - energy range (min, max)
 - flux profile (units, time, flux)
- Other parameters needed?
- Initially will focus on peak flux and probability for E > 10 MeV
- Comparison with GOES data

SEP SCOREBOARD MOCK-UPS

Scoreboard visualisation (1)

Probability heat map at a single time

Predicted proton flux time-series

Scoreboard visualisation (2)

Probability heat map at a single time

Probability time-series

MINI SEP CHALLENGE

Mini SEP Challenge

- For a proper validation, a large enough sample size is needed, but there is currently not much (SEP) activity
- > Started with an mini SEP challenge on past events: 5 SEP events and 5 "non" events from SC24
- Helps in further defining the SEP scoreboard
- Also allows participation of predictions not running in real-time
- Currently participating forecasts:
 - UMASEP
 - FORESPEF nowcast
 - SEPForecast
 - SPARX
 - (RELeASE -> lack of real-time coverage)

Mini Challenge – SEP events

> 5 strongest SEP events (flux > 10 pfu for E>10 MeV) from SC24 as listed on: ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt

SEP onset time	Peak flux (>10 MeV)	Flare Strength	Location	CME speed	width
23 Jan 2012 05:30	6310 pfu	M8	N28W36	2176 km/s	halo
27 Jan 2012 19:05	796 pfu	X1	N27W71	2508 km/s	halo
07 Mar 2012 05:10	6530 pfu	X5	N17E15	2684 km/s	halo
22 May 2013 14:20	1660 pfu	M5	N15W70	1466 km/s	halo
06 Jan 2014 09:15	1033 pfu	X1	S15W11	1830 km/s	halo

Mini Challenge – SEP events

COMESEP SEPForecast:

- Flare: possible (40-70%), minor (10¹-10² pfu)
- Flare+CME: likely (70-90%), moderate(10²-10³ pfu)

proton flux (E > 10 MeV)

high proton flux >10 pfu

Mini Challenge – SEP events

COMESEP SEPForecast:

Flare: Possible (40-70%) - minor (10¹-10² pfu)

Flare+CME: likely(70-90%), minor(10¹-10² pfu)

Mini Challenge – "non" SEP events

- > 5 strongest western flares from SC24 that
 - did not result in an SEP event (flux > 10 pfu for E>10 MeV),
 - were not preceded by another X flare two days before,
 - did not occur during an ongoing SEP event.

Flare peak time	Flare Strength	Location	CME* speed	width	Proton flux
06 Sep 2011 22:20	X2.1	N14W18	575 km/s	halo	~9 pfu
10 Nov 2013 05:14	X1.1	S14W13	682 km/s	262°	~1 pfu (no clear peak)
24 Oct 2014 21:41	X3.1	S16W21	(184 km/s)	(35°)	No enhancement
27 Oct 2014 14:47	X2.0	S17W52	170 km/s	55°	No enhancement
20 Dec 2014 00:28	X1.8	S21W24	830 km/s	257°	~3 pfu

*CME info not provided in initial challenge

Mini Challenge – "non" SEP events

VALIDATION OF FORECASTS

Forecast validation

- Any validation studies based on the SEP Scoreboard should be done in collaboration with the providers of the forecasts
- Typical verification measures used in the literature considered:
 - Dichotomous (yes/no) forecasts:
 - (skill) scores based on contingency table (hit, miss, false alarm, correct negative): accuracy, hit rate, false alarm ratio and rate, Heidke skill score, true skill statistic, ...
 - Derived as function of probability threshold for probabilistic forecasts
 - Continuous variables forecasts (e.g. peak flux):
 - Comparison of observed versus predicted value: correlation plot and coefficient, bias, mean error, ...
 - Probabilistic forecasts:
 - Verify the predicted probabilities on longer timescales: reliability diagram,
 Brier score, ...

LINKING WITH FLARE & CME SCOREBOARDS

Linking the Scoreboards

Example of activities linked to a CME event in the CCMC DONKI database:

http://kauai.ccmc.gsfc.nasa.gov/DONKI

Coronal Mass Ejection

Catalog: SWRC_CATALOG

Start Time: 2015-03-15T02:00Z (SOHO: LASCO/C2)

All Detecting Spacecrafts:

SOHO: LASCO/C2 SOHO: LASCO/C3

Activity ID: 2015-03-15T02:00:00-CME-001 (version 4)

Source Location: S15W24

Active Region Number: 12297

Note: This CME is connected to the long duration C9.1 flare

erupting, bright post-flare arcade later in AR 2297

Submitted on 2015-03-15T14:17Z by Karin Muglach

2015-03-15T01:15:00-FLR-001

FLR Type: C9.1

2015-03-16T07:36:00-SEP-001

SOHO: COSTEP 15.8-39.8 MeV

2015-03-17T04:05:00-IPS-001

Location: Earth

2015-03-17T06:00:00-GST-001

NOAA Kp: 6 (2015-03-17T09:00Z)

NOAA Kp: 6 (2015-03-17T12:00Z)

NOAA Kp: 8 (2015-03-17T15:00Z)

NOAA Kp: 8 (2015-03-17T18:00Z)

NOAA Kp: 7 (2015-03-17T21:00Z)

NOAA Kp: 8 (2015-03-18T00:00Z)

NOAA Kp: 6 (2015-03-18T03:00Z)

NOAA Kp: 6 (2015-03-18T18:00Z)

2015-03-17T06:23:00-MPC-001