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+*Science

Motivation for Neutral Density .

v +»* Applications

Satellite Drag Specificati

Satellite drag errors degrade capability to:
* Maintain accurate catalog of all space objects
* Predict and avoid space collisions
* Predict satellite reentry time & location
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Altitude Regimes of SatelliteDrag "% rechmoiogy

+»* Applications
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What physical processes are important?

24 Hour Orbital In-Track Error at 400km
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Summary Of Goals : ~ ++ Technology

\(\ 2 +»* Applications
X N

Develop an ensemble assimilative neutral density model

* AF requirement for better satellite drag specification

and forecast: improve specification beyond JBO8 and
HASDM

* Provide a modeling tool that outperforms current AF
capabilities

* Consists of ensemble of world-class first-principles
well-validated IT models

e Assimilative
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Overview
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Image credit:NASA

conjunction
analysis

Results

*Improved satellite orbit nowcast
and 72h forecast
* Improvements over HASDM and JB0O8
* Up to three-fold improvement during

storms and solar minimum

* Densities, winds, and composition
outputs

* Covers altitudes from 30 km to
1500 km

*Improved performance during
geomagnetic storms

satellite drag and
density observatjons

* Orbit observations
*GPS

* Accelerometers
*O/N,

* Mass Spectrometer

Atmospheric
Density

Assimilation

Model

ADAM Architecture

HIGH LATITUDE FORCING SOLAR FORCING

SUPER-ENSEMBLE OF FULL-PHYSICS MODELS

. ‘ [ LOWER BOUNDARY FORCING

NOWCAST AND FORECAST OUTPUT PROCESSING, VALIDATION |

orbital analysis

Super-Ensemble Approach
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Output information
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orbit prediction and
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ADAM top level design-="~ " 2 Technology

¢ Applications
{ \\ﬁ pp

HIGH LATITUDE FORCING SOLAR FORCING

[—>‘ Unified High Latitude Module | Unified Solar Module ﬁ

SUPER-ENSEMBLE OF FULL-PHYSICS MODELS
TIE, TIME, CTIPe, Empirical Models

<an

9:_:‘;,:»

LOWER BOUNDARY FORCING

NetCDF files containing nowcast and 72h forecas: t
fields and uncertainties (p,U,V,T...) from each model

" feedback

NOWCAST AND FORECAST OUTPUT PROCESSING, VALIDATION
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81-day Density
|

254107

2.0+10"

15410

Density [km/m”3]

1.010"

5.0410™"

PRELIMINARY RESULTS

01/01/04

01/01/06

01/01/08

JBO8 and CHAMP densities compared with best performing model in super-ensemble of full-

physics members
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Options for additional inpt e—
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= +»* Applications

Assimilated Data Types

Data Type Assimilation
Time Span

Orbit Average Drag 6-72 h Infer observed energy dissipation rate (EDR)
i.e. Calspheres, DANDE, from general perturbations (TLEs) or special
POPACS perturbations (high task tracking data). Select
30-90 objects with stable ballistic coefficients.
HASDM Densities 6h EDR is inferred from HASDM density outputs
Orbit Average Densities 24 hours Already processed high-task tracking data
Orbit Resolved Drag: GPS 15-30 min Observed EDR from special perturbations and
GPS measurements
Orbit Resolved Drag: 15 min Observed acceleration at 10-45 sec cadence
accelerometers (Swarm) (in-track and cross-track), binned to 15 min
O/N2 (GOLD) 30 min Dayside disk composition

Mass Spectrometer 10-30 sec In-situ day and night composition
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Assimilation
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Static Ensemble
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Storm response modelmg
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Time-series of model and measured densities anng the CHAMP satellite track. Various models
are represented above showing the improvement in the representation of high latitude density
features when using AMIE. It is also seen that TIME-GCM with AMIE outperforms the empirical

models.
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Lower boundary parameter+=~- & Technology

assimilation: 2004.t0.2007 * Applications

81-day Modeled and Measured Density
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Storm Results
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CO"C'USiOﬂ A > >~ ++ Technology

+»* Applications

e New state-of-the-art assimilative model of the
atmosphere is being developed to include many
of the lessons learned from NADIR MURI

* Improve over operational drag-specification
models

* |Includes altitudes up to and above 1000km

e Future plans to make outputs commercially
available to civilian customers
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Thank You!

We appreciate your questions and feedback
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Design Features =~ * Technology

R = +»* Applications
R N o

* Dynamically tuned models result in optimum
background atmospheric state

 Multiple model (super-ensemble) approach
allows for graceful degradation in case of input-
stream or model interruption

* |nclusion of TIME-GCM allows for specification of
densities in the re-entry regime, down to 30km

* |Inclusion of Helium in several models allows for
drag computation up to 1000km



Testing with Orbit Average data’
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 TLE’s are being used as a stand in for orbital arcs analysis

— Cadence and arc length is a conservative stand-in for the
special-perturbations approach available operationally to the

customer

— Transition to 6-hour arcs from speC|aI perturbatlons analy5|s in

Phase IlI

* TLE’s provide some of the
same sampling
characteristics and
measurement parameters as
the special-perturbations
approach

* Drawbacks
— Lower signal-to-noise
— Latency (™1 day)

9/8/15
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Requirements .  Technology

+«* Applications

-

S-day fit span using HASDM 3-day prediction with HASDM

(a) ADAM will improve nowcast and forecast RMS through ensemble assimilation of
measured drag and better specification of forcing inputs, realistic prediction of winds,
and improved ballistic coefficient forecast

l

1m0

In-Track Orbit Error [km]

(b) ADAM will reduce number of outliers by improving ;
the large and medium scale density structure as | i

well as response to geomagnetic activity with the
use of first principles modgls L i
Requirement Goal
Nowcast RMSE lower than JBO8 more than | RMSE better than HASDM more
half the time for storm time and than half the time for storm time
quiet conditions 250 to 1000km. | and quiet conditions 30-1000km
JBO8: 7-18% at 200-800km HASDM: 6-10% at 200-800km
| 72h Forecast RMSE lower than JBOS8 in forecast | RMSE better than HASDM in B
9/8/15 mode Pilinski et al. forecast mode 19
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Phase | Accomplishments: ' # Technology

storm response . T % Applications
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seasonal effects a nﬂ'ttun‘

400 km
X Data (a)]
e 1S~ TIEGCM, constant eddy diffusion -
L
a
°
Q
2007 2008 2009 2010
Year
400 km
X Data (b)]
e 1S~ TIEGCM, variable eddy diffusion -
3
7
°
LA
Q
2007 2008 2009 2010
Year

Model-data comparisons of global-mean neutral density at 400 km. Black: neutral density
derived from drag data of more than 5000 orbiting objects [Emmert, 2009]; Red: TIE-GCM
simulated neutral density. (a): model-data comparisons when the default constant eddy
diffusion was imposed at the model lower boundary; (b): model-data comparisons when the
variable eddy diffusion was imposed at the model lower boundary.
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What is'Satellite Drag? * Technlogy

+»* Applications

Relative importance of\ario
24 Hour Orbital In-Track Error at 400km
Circular Orbit

* Large scale perturbations U e ) W WA WA S N N—
: : o 5 2
can be misrepresented in 180 - 2\ \ 2 %,b-
. %
empirical models seol y S, 2, §
N 3 25
£ 140t ’0,)) KNG
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g L < 100} 78 Sm 1
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2 10
T 80f m 3
E S
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2008]
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namic Tuning

Example of dynamically tuned eddy diffusion coefficient
Our approach combines dynamic calibration/tuning with assimilation

81-day Modeled and Measured Density

1.2+10™" - - T T - T ' - | '
- TIME-GCM, constant Kzz, no GSWM Seasonal variability exists in the 7
TIME-GCM, constant Kzz + GSWM . . . _
GCMis prior to introducing
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Pilinski and Crowley, 2015
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Ensemble-Member Real-time % Technology -
. ‘ d +»* Applications AGTE A
Architecture RSTRA
Run starts as cronjob. Determine real time, start time
* Implemented and tested
with:
Found Sub
« TIE, TIME, CTIPe restartfle? cadence from time
Set run parameters, based on found
restart file
]
 Ensembles executed in
paraIIeI on multiple cores C?]E:fsrti:ss EXIT with WARNING
Unified Input Create input file and run script, copy
Database any necessary data files,
!
Launch run
e Schedule based rather than
event based operation EXIT with ERROR Cg;;kpfzgs Running Wait
* Leads to graceful
degradation in event of
data-loss
End time = N Increment start
] EXIT successfully current 4 time, restart file
9/8/15 Pilinski et al. time? >4
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81-day Modeled and Measured Density
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