

- Accelerated particle distributions are then calculated along the whole shock front, based on the diffusive shock acceleration.
- Accelerated particles are diffused back to the shock complex, between each parcel behind the shock. κ_{\parallel} from QLT and κ_{\perp} from NLGC.
- The predominant κ_{\parallel} is almost along longitudinal direction in the sheath region!
- Thus we have all the distribution functions in each parcel at each time step.
- Important for ESP phase!

July 23 event

- CME properties:
 - 1900 km/s, 60 degree half width
 - Centered at -165 HEEQ
- Difficulties in this event:
 - Modeling the ESP and decaying phase

Sep 10 event

- CME properties:
 - 2500 km/s, 70 degree half width
 - Centered at +108 HEEQ
 - Low background density: I per cc at I AU
- Difficulties in this event:
 - How to capture the effect from previous event?
 - Perpendicular diffusion to mars

SUMMARY

- How to optimize run results differ from the initial run?
 - Find the proper solar wind properties (B, n,V)
 - Find the proper CME properties (speed, width, direction) Ensemble modeling
 - Determines the injection rate from an initial run, then modify the injection rate from the first run.
- What aspects of the event does your model capture well, and what aspects were more difficult to capture?
 - + Captures the coupled effect of acceleration and transport. Good for understanding the physics n the SEP events
 - + Including perpendicular transport, with κ_{\perp} calculated from NLGC theory. This allow us to have a wide spread of energetic particles over a large longitudinal range.
 - + ESP phase and decaying phase can be approximated
 - Simple homogeneous parker spiral background solar wind
 - Hard to capture the effect from a previous CME event
- What are the next steps for your modeling technique?
 - Couple with a coronal model for early time accelerations
 - Use real solar wind input for background solar wind
 - Practice modeling on real events.